skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tung, Sui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We develop finite element models of the coseismic displacement field accounting for the 3D elastic structures surrounding the epicentral area of the 2019 Ridgecrest earthquake sequence containing two major events of Mw7.1 and Mw6.4. The coseismic slip distribution is inferred from the surface displacement field recorded by interferometric synthetic aperture radar. The rupture dip geometry is further optimized using a novel nonlinear‐crossover‐linear inversion approach. It is found that accounting for elastic heterogeneity and fault along‐strike curvilinearity improves the fit to the observed displacement field and yields a more accurate estimate of geodetic moment and Coulomb stress changes. We observe spatial correlations among the locations of aftershocks and patches of high slip, and rock anomalous elastic properties, suggesting that the shallow crust's elastic structures possibly controlled the Ridgecrest earthquake sequence. Most of the coseismic slip with a peak slip of 7.4 m at 3.6 km depth occurred above a zone of reducedS‐wave velocity and significant post‐Mw7.1 afterslip. This implies that viscous materials or fluid presence might have contributed to the low rupture velocity of the mainshock. Moreover, the zone of high slip on the northwest‐trending fault segment is laterally bounded by two aftershock clusters, whose location is characterized by intermediate rock rigidity. Notably, some minor orthogonal faults consistently end above a subsurface rigid body. Overall, these observations of structural controls improve our understandings of the seismogenesis within incipient fault systems. 
    more » « less